Copied to
clipboard

G = C24.20D10order 320 = 26·5

20th non-split extension by C24 of D10 acting via D10/C5=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C24.20D10, (C2×Dic5)⋊6D4, (C2×C20).302D4, (C22×D4).8D5, C10.73C22≀C2, C22.283(D4×D5), C2.25(C202D4), (C22×C10).110D4, (C22×C4).152D10, C2.6(C242D5), C55(C23.10D4), C23.30(C5⋊D4), C10.130(C4⋊D4), C10.48(C4.4D4), (C23×C10).48C22, C23.384(C22×D5), C10.10C4245C2, C2.34(Dic5⋊D4), C2.14(C20.17D4), (C22×C20).395C22, (C22×C10).367C23, C22.106(D42D5), C10.84(C22.D4), (C22×Dic5).68C22, C2.17(C23.18D10), (D4×C2×C10).12C2, (C2×C10).556(C2×D4), (C2×C4).85(C5⋊D4), (C2×C23.D5)⋊11C2, (C2×C10.D4)⋊43C2, C22.218(C2×C5⋊D4), (C2×C10).163(C4○D4), SmallGroup(320,849)

Series: Derived Chief Lower central Upper central

C1C22×C10 — C24.20D10
C1C5C10C2×C10C22×C10C22×Dic5C2×C23.D5 — C24.20D10
C5C22×C10 — C24.20D10
C1C23C22×D4

Generators and relations for C24.20D10
 G = < a,b,c,d,e,f | a2=b2=c2=d2=e10=1, f2=dc=cd, ab=ba, ac=ca, eae-1=ad=da, faf-1=abd, bc=cb, bd=db, be=eb, bf=fb, ce=ec, cf=fc, de=ed, df=fd, fef-1=ce-1 >

Subgroups: 742 in 238 conjugacy classes, 65 normal (25 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C5, C2×C4, C2×C4, D4, C23, C23, C23, C10, C10, C10, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C24, Dic5, C20, C2×C10, C2×C10, C2×C10, C2.C42, C2×C22⋊C4, C2×C4⋊C4, C22×D4, C2×Dic5, C2×Dic5, C2×C20, C2×C20, C5×D4, C22×C10, C22×C10, C22×C10, C23.10D4, C10.D4, C23.D5, C22×Dic5, C22×Dic5, C22×C20, D4×C10, C23×C10, C10.10C42, C2×C10.D4, C2×C23.D5, D4×C2×C10, C24.20D10
Quotients: C1, C2, C22, D4, C23, D5, C2×D4, C4○D4, D10, C22≀C2, C4⋊D4, C22.D4, C4.4D4, C5⋊D4, C22×D5, C23.10D4, D4×D5, D42D5, C2×C5⋊D4, C23.18D10, C20.17D4, C202D4, Dic5⋊D4, C242D5, C24.20D10

Smallest permutation representation of C24.20D10
On 160 points
Generators in S160
(2 64)(4 66)(6 68)(8 70)(10 62)(12 74)(14 76)(16 78)(18 80)(20 72)(21 33)(23 35)(25 37)(27 39)(29 31)(41 136)(42 107)(43 138)(44 109)(45 140)(46 101)(47 132)(48 103)(49 134)(50 105)(52 98)(54 100)(56 92)(58 94)(60 96)(81 119)(82 144)(83 111)(84 146)(85 113)(86 148)(87 115)(88 150)(89 117)(90 142)(102 125)(104 127)(106 129)(108 121)(110 123)(112 156)(114 158)(116 160)(118 152)(120 154)(122 139)(124 131)(126 133)(128 135)(130 137)(141 151)(143 153)(145 155)(147 157)(149 159)
(1 11)(2 12)(3 13)(4 14)(5 15)(6 16)(7 17)(8 18)(9 19)(10 20)(21 58)(22 59)(23 60)(24 51)(25 52)(26 53)(27 54)(28 55)(29 56)(30 57)(31 92)(32 93)(33 94)(34 95)(35 96)(36 97)(37 98)(38 99)(39 100)(40 91)(41 106)(42 107)(43 108)(44 109)(45 110)(46 101)(47 102)(48 103)(49 104)(50 105)(61 71)(62 72)(63 73)(64 74)(65 75)(66 76)(67 77)(68 78)(69 79)(70 80)(81 119)(82 120)(83 111)(84 112)(85 113)(86 114)(87 115)(88 116)(89 117)(90 118)(121 138)(122 139)(123 140)(124 131)(125 132)(126 133)(127 134)(128 135)(129 136)(130 137)(141 151)(142 152)(143 153)(144 154)(145 155)(146 156)(147 157)(148 158)(149 159)(150 160)
(1 28)(2 29)(3 30)(4 21)(5 22)(6 23)(7 24)(8 25)(9 26)(10 27)(11 55)(12 56)(13 57)(14 58)(15 59)(16 60)(17 51)(18 52)(19 53)(20 54)(31 64)(32 65)(33 66)(34 67)(35 68)(36 69)(37 70)(38 61)(39 62)(40 63)(41 158)(42 159)(43 160)(44 151)(45 152)(46 153)(47 154)(48 155)(49 156)(50 157)(71 99)(72 100)(73 91)(74 92)(75 93)(76 94)(77 95)(78 96)(79 97)(80 98)(81 124)(82 125)(83 126)(84 127)(85 128)(86 129)(87 130)(88 121)(89 122)(90 123)(101 143)(102 144)(103 145)(104 146)(105 147)(106 148)(107 149)(108 150)(109 141)(110 142)(111 133)(112 134)(113 135)(114 136)(115 137)(116 138)(117 139)(118 140)(119 131)(120 132)
(1 63)(2 64)(3 65)(4 66)(5 67)(6 68)(7 69)(8 70)(9 61)(10 62)(11 73)(12 74)(13 75)(14 76)(15 77)(16 78)(17 79)(18 80)(19 71)(20 72)(21 33)(22 34)(23 35)(24 36)(25 37)(26 38)(27 39)(28 40)(29 31)(30 32)(41 129)(42 130)(43 121)(44 122)(45 123)(46 124)(47 125)(48 126)(49 127)(50 128)(51 97)(52 98)(53 99)(54 100)(55 91)(56 92)(57 93)(58 94)(59 95)(60 96)(81 153)(82 154)(83 155)(84 156)(85 157)(86 158)(87 159)(88 160)(89 151)(90 152)(101 131)(102 132)(103 133)(104 134)(105 135)(106 136)(107 137)(108 138)(109 139)(110 140)(111 145)(112 146)(113 147)(114 148)(115 149)(116 150)(117 141)(118 142)(119 143)(120 144)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 104 40 112)(2 145 31 133)(3 102 32 120)(4 143 33 131)(5 110 34 118)(6 141 35 139)(7 108 36 116)(8 149 37 137)(9 106 38 114)(10 147 39 135)(11 49 91 84)(12 155 92 126)(13 47 93 82)(14 153 94 124)(15 45 95 90)(16 151 96 122)(17 43 97 88)(18 159 98 130)(19 41 99 86)(20 157 100 128)(21 101 66 119)(22 142 67 140)(23 109 68 117)(24 150 69 138)(25 107 70 115)(26 148 61 136)(27 105 62 113)(28 146 63 134)(29 103 64 111)(30 144 65 132)(42 80 87 52)(44 78 89 60)(46 76 81 58)(48 74 83 56)(50 72 85 54)(51 160 79 121)(53 158 71 129)(55 156 73 127)(57 154 75 125)(59 152 77 123)

G:=sub<Sym(160)| (2,64)(4,66)(6,68)(8,70)(10,62)(12,74)(14,76)(16,78)(18,80)(20,72)(21,33)(23,35)(25,37)(27,39)(29,31)(41,136)(42,107)(43,138)(44,109)(45,140)(46,101)(47,132)(48,103)(49,134)(50,105)(52,98)(54,100)(56,92)(58,94)(60,96)(81,119)(82,144)(83,111)(84,146)(85,113)(86,148)(87,115)(88,150)(89,117)(90,142)(102,125)(104,127)(106,129)(108,121)(110,123)(112,156)(114,158)(116,160)(118,152)(120,154)(122,139)(124,131)(126,133)(128,135)(130,137)(141,151)(143,153)(145,155)(147,157)(149,159), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(21,58)(22,59)(23,60)(24,51)(25,52)(26,53)(27,54)(28,55)(29,56)(30,57)(31,92)(32,93)(33,94)(34,95)(35,96)(36,97)(37,98)(38,99)(39,100)(40,91)(41,106)(42,107)(43,108)(44,109)(45,110)(46,101)(47,102)(48,103)(49,104)(50,105)(61,71)(62,72)(63,73)(64,74)(65,75)(66,76)(67,77)(68,78)(69,79)(70,80)(81,119)(82,120)(83,111)(84,112)(85,113)(86,114)(87,115)(88,116)(89,117)(90,118)(121,138)(122,139)(123,140)(124,131)(125,132)(126,133)(127,134)(128,135)(129,136)(130,137)(141,151)(142,152)(143,153)(144,154)(145,155)(146,156)(147,157)(148,158)(149,159)(150,160), (1,28)(2,29)(3,30)(4,21)(5,22)(6,23)(7,24)(8,25)(9,26)(10,27)(11,55)(12,56)(13,57)(14,58)(15,59)(16,60)(17,51)(18,52)(19,53)(20,54)(31,64)(32,65)(33,66)(34,67)(35,68)(36,69)(37,70)(38,61)(39,62)(40,63)(41,158)(42,159)(43,160)(44,151)(45,152)(46,153)(47,154)(48,155)(49,156)(50,157)(71,99)(72,100)(73,91)(74,92)(75,93)(76,94)(77,95)(78,96)(79,97)(80,98)(81,124)(82,125)(83,126)(84,127)(85,128)(86,129)(87,130)(88,121)(89,122)(90,123)(101,143)(102,144)(103,145)(104,146)(105,147)(106,148)(107,149)(108,150)(109,141)(110,142)(111,133)(112,134)(113,135)(114,136)(115,137)(116,138)(117,139)(118,140)(119,131)(120,132), (1,63)(2,64)(3,65)(4,66)(5,67)(6,68)(7,69)(8,70)(9,61)(10,62)(11,73)(12,74)(13,75)(14,76)(15,77)(16,78)(17,79)(18,80)(19,71)(20,72)(21,33)(22,34)(23,35)(24,36)(25,37)(26,38)(27,39)(28,40)(29,31)(30,32)(41,129)(42,130)(43,121)(44,122)(45,123)(46,124)(47,125)(48,126)(49,127)(50,128)(51,97)(52,98)(53,99)(54,100)(55,91)(56,92)(57,93)(58,94)(59,95)(60,96)(81,153)(82,154)(83,155)(84,156)(85,157)(86,158)(87,159)(88,160)(89,151)(90,152)(101,131)(102,132)(103,133)(104,134)(105,135)(106,136)(107,137)(108,138)(109,139)(110,140)(111,145)(112,146)(113,147)(114,148)(115,149)(116,150)(117,141)(118,142)(119,143)(120,144), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,104,40,112)(2,145,31,133)(3,102,32,120)(4,143,33,131)(5,110,34,118)(6,141,35,139)(7,108,36,116)(8,149,37,137)(9,106,38,114)(10,147,39,135)(11,49,91,84)(12,155,92,126)(13,47,93,82)(14,153,94,124)(15,45,95,90)(16,151,96,122)(17,43,97,88)(18,159,98,130)(19,41,99,86)(20,157,100,128)(21,101,66,119)(22,142,67,140)(23,109,68,117)(24,150,69,138)(25,107,70,115)(26,148,61,136)(27,105,62,113)(28,146,63,134)(29,103,64,111)(30,144,65,132)(42,80,87,52)(44,78,89,60)(46,76,81,58)(48,74,83,56)(50,72,85,54)(51,160,79,121)(53,158,71,129)(55,156,73,127)(57,154,75,125)(59,152,77,123)>;

G:=Group( (2,64)(4,66)(6,68)(8,70)(10,62)(12,74)(14,76)(16,78)(18,80)(20,72)(21,33)(23,35)(25,37)(27,39)(29,31)(41,136)(42,107)(43,138)(44,109)(45,140)(46,101)(47,132)(48,103)(49,134)(50,105)(52,98)(54,100)(56,92)(58,94)(60,96)(81,119)(82,144)(83,111)(84,146)(85,113)(86,148)(87,115)(88,150)(89,117)(90,142)(102,125)(104,127)(106,129)(108,121)(110,123)(112,156)(114,158)(116,160)(118,152)(120,154)(122,139)(124,131)(126,133)(128,135)(130,137)(141,151)(143,153)(145,155)(147,157)(149,159), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(21,58)(22,59)(23,60)(24,51)(25,52)(26,53)(27,54)(28,55)(29,56)(30,57)(31,92)(32,93)(33,94)(34,95)(35,96)(36,97)(37,98)(38,99)(39,100)(40,91)(41,106)(42,107)(43,108)(44,109)(45,110)(46,101)(47,102)(48,103)(49,104)(50,105)(61,71)(62,72)(63,73)(64,74)(65,75)(66,76)(67,77)(68,78)(69,79)(70,80)(81,119)(82,120)(83,111)(84,112)(85,113)(86,114)(87,115)(88,116)(89,117)(90,118)(121,138)(122,139)(123,140)(124,131)(125,132)(126,133)(127,134)(128,135)(129,136)(130,137)(141,151)(142,152)(143,153)(144,154)(145,155)(146,156)(147,157)(148,158)(149,159)(150,160), (1,28)(2,29)(3,30)(4,21)(5,22)(6,23)(7,24)(8,25)(9,26)(10,27)(11,55)(12,56)(13,57)(14,58)(15,59)(16,60)(17,51)(18,52)(19,53)(20,54)(31,64)(32,65)(33,66)(34,67)(35,68)(36,69)(37,70)(38,61)(39,62)(40,63)(41,158)(42,159)(43,160)(44,151)(45,152)(46,153)(47,154)(48,155)(49,156)(50,157)(71,99)(72,100)(73,91)(74,92)(75,93)(76,94)(77,95)(78,96)(79,97)(80,98)(81,124)(82,125)(83,126)(84,127)(85,128)(86,129)(87,130)(88,121)(89,122)(90,123)(101,143)(102,144)(103,145)(104,146)(105,147)(106,148)(107,149)(108,150)(109,141)(110,142)(111,133)(112,134)(113,135)(114,136)(115,137)(116,138)(117,139)(118,140)(119,131)(120,132), (1,63)(2,64)(3,65)(4,66)(5,67)(6,68)(7,69)(8,70)(9,61)(10,62)(11,73)(12,74)(13,75)(14,76)(15,77)(16,78)(17,79)(18,80)(19,71)(20,72)(21,33)(22,34)(23,35)(24,36)(25,37)(26,38)(27,39)(28,40)(29,31)(30,32)(41,129)(42,130)(43,121)(44,122)(45,123)(46,124)(47,125)(48,126)(49,127)(50,128)(51,97)(52,98)(53,99)(54,100)(55,91)(56,92)(57,93)(58,94)(59,95)(60,96)(81,153)(82,154)(83,155)(84,156)(85,157)(86,158)(87,159)(88,160)(89,151)(90,152)(101,131)(102,132)(103,133)(104,134)(105,135)(106,136)(107,137)(108,138)(109,139)(110,140)(111,145)(112,146)(113,147)(114,148)(115,149)(116,150)(117,141)(118,142)(119,143)(120,144), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,104,40,112)(2,145,31,133)(3,102,32,120)(4,143,33,131)(5,110,34,118)(6,141,35,139)(7,108,36,116)(8,149,37,137)(9,106,38,114)(10,147,39,135)(11,49,91,84)(12,155,92,126)(13,47,93,82)(14,153,94,124)(15,45,95,90)(16,151,96,122)(17,43,97,88)(18,159,98,130)(19,41,99,86)(20,157,100,128)(21,101,66,119)(22,142,67,140)(23,109,68,117)(24,150,69,138)(25,107,70,115)(26,148,61,136)(27,105,62,113)(28,146,63,134)(29,103,64,111)(30,144,65,132)(42,80,87,52)(44,78,89,60)(46,76,81,58)(48,74,83,56)(50,72,85,54)(51,160,79,121)(53,158,71,129)(55,156,73,127)(57,154,75,125)(59,152,77,123) );

G=PermutationGroup([[(2,64),(4,66),(6,68),(8,70),(10,62),(12,74),(14,76),(16,78),(18,80),(20,72),(21,33),(23,35),(25,37),(27,39),(29,31),(41,136),(42,107),(43,138),(44,109),(45,140),(46,101),(47,132),(48,103),(49,134),(50,105),(52,98),(54,100),(56,92),(58,94),(60,96),(81,119),(82,144),(83,111),(84,146),(85,113),(86,148),(87,115),(88,150),(89,117),(90,142),(102,125),(104,127),(106,129),(108,121),(110,123),(112,156),(114,158),(116,160),(118,152),(120,154),(122,139),(124,131),(126,133),(128,135),(130,137),(141,151),(143,153),(145,155),(147,157),(149,159)], [(1,11),(2,12),(3,13),(4,14),(5,15),(6,16),(7,17),(8,18),(9,19),(10,20),(21,58),(22,59),(23,60),(24,51),(25,52),(26,53),(27,54),(28,55),(29,56),(30,57),(31,92),(32,93),(33,94),(34,95),(35,96),(36,97),(37,98),(38,99),(39,100),(40,91),(41,106),(42,107),(43,108),(44,109),(45,110),(46,101),(47,102),(48,103),(49,104),(50,105),(61,71),(62,72),(63,73),(64,74),(65,75),(66,76),(67,77),(68,78),(69,79),(70,80),(81,119),(82,120),(83,111),(84,112),(85,113),(86,114),(87,115),(88,116),(89,117),(90,118),(121,138),(122,139),(123,140),(124,131),(125,132),(126,133),(127,134),(128,135),(129,136),(130,137),(141,151),(142,152),(143,153),(144,154),(145,155),(146,156),(147,157),(148,158),(149,159),(150,160)], [(1,28),(2,29),(3,30),(4,21),(5,22),(6,23),(7,24),(8,25),(9,26),(10,27),(11,55),(12,56),(13,57),(14,58),(15,59),(16,60),(17,51),(18,52),(19,53),(20,54),(31,64),(32,65),(33,66),(34,67),(35,68),(36,69),(37,70),(38,61),(39,62),(40,63),(41,158),(42,159),(43,160),(44,151),(45,152),(46,153),(47,154),(48,155),(49,156),(50,157),(71,99),(72,100),(73,91),(74,92),(75,93),(76,94),(77,95),(78,96),(79,97),(80,98),(81,124),(82,125),(83,126),(84,127),(85,128),(86,129),(87,130),(88,121),(89,122),(90,123),(101,143),(102,144),(103,145),(104,146),(105,147),(106,148),(107,149),(108,150),(109,141),(110,142),(111,133),(112,134),(113,135),(114,136),(115,137),(116,138),(117,139),(118,140),(119,131),(120,132)], [(1,63),(2,64),(3,65),(4,66),(5,67),(6,68),(7,69),(8,70),(9,61),(10,62),(11,73),(12,74),(13,75),(14,76),(15,77),(16,78),(17,79),(18,80),(19,71),(20,72),(21,33),(22,34),(23,35),(24,36),(25,37),(26,38),(27,39),(28,40),(29,31),(30,32),(41,129),(42,130),(43,121),(44,122),(45,123),(46,124),(47,125),(48,126),(49,127),(50,128),(51,97),(52,98),(53,99),(54,100),(55,91),(56,92),(57,93),(58,94),(59,95),(60,96),(81,153),(82,154),(83,155),(84,156),(85,157),(86,158),(87,159),(88,160),(89,151),(90,152),(101,131),(102,132),(103,133),(104,134),(105,135),(106,136),(107,137),(108,138),(109,139),(110,140),(111,145),(112,146),(113,147),(114,148),(115,149),(116,150),(117,141),(118,142),(119,143),(120,144)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,104,40,112),(2,145,31,133),(3,102,32,120),(4,143,33,131),(5,110,34,118),(6,141,35,139),(7,108,36,116),(8,149,37,137),(9,106,38,114),(10,147,39,135),(11,49,91,84),(12,155,92,126),(13,47,93,82),(14,153,94,124),(15,45,95,90),(16,151,96,122),(17,43,97,88),(18,159,98,130),(19,41,99,86),(20,157,100,128),(21,101,66,119),(22,142,67,140),(23,109,68,117),(24,150,69,138),(25,107,70,115),(26,148,61,136),(27,105,62,113),(28,146,63,134),(29,103,64,111),(30,144,65,132),(42,80,87,52),(44,78,89,60),(46,76,81,58),(48,74,83,56),(50,72,85,54),(51,160,79,121),(53,158,71,129),(55,156,73,127),(57,154,75,125),(59,152,77,123)]])

62 conjugacy classes

class 1 2A···2G2H2I2J2K4A4B4C···4J5A5B10A···10N10O···10AD20A···20H
order12···22222444···45510···1010···1020···20
size11···144444420···20222···24···44···4

62 irreducible representations

dim1111122222222244
type++++++++++++-
imageC1C2C2C2C2D4D4D4D5C4○D4D10D10C5⋊D4C5⋊D4D4×D5D42D5
kernelC24.20D10C10.10C42C2×C10.D4C2×C23.D5D4×C2×C10C2×Dic5C2×C20C22×C10C22×D4C2×C10C22×C4C24C2×C4C23C22C22
# reps11141224262481626

Matrix representation of C24.20D10 in GL6(𝔽41)

100000
0400000
001000
0004000
000010
00002340
,
4000000
0400000
0040000
0004000
0000400
0000040
,
100000
010000
0040000
0004000
0000400
0000040
,
4000000
0400000
0040000
0004000
000010
000001
,
010000
100000
000100
001000
0000370
00002831
,
3200000
0320000
001000
0004000
00002521
00001916

G:=sub<GL(6,GF(41))| [1,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,1,23,0,0,0,0,0,40],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,37,28,0,0,0,0,0,31],[32,0,0,0,0,0,0,32,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,25,19,0,0,0,0,21,16] >;

C24.20D10 in GAP, Magma, Sage, TeX

C_2^4._{20}D_{10}
% in TeX

G:=Group("C2^4.20D10");
// GroupNames label

G:=SmallGroup(320,849);
// by ID

G=gap.SmallGroup(320,849);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,224,253,254,387,12550]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=e^10=1,f^2=d*c=c*d,a*b=b*a,a*c=c*a,e*a*e^-1=a*d=d*a,f*a*f^-1=a*b*d,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=c*e^-1>;
// generators/relations

׿
×
𝔽